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Direct numerical simulation (DNS) is performed to investigate the vortex
synchronization phenomena in the wake behind a circular cylinder at the Reynolds
numbers, Re = 220 (mode-A regime) and 360 (mode-B regime). To generate vortex
synchronization, a sinusoidal streamwise velocity perturbation, the frequency of which
is about twice the natural shedding frequency, is superimposed on the free stream
velocity. At Re = 360, vortex synchronization occurs when the perturbation frequency
is exactly twice the natural shedding frequency. However, at Re = 220, it does not
occur when the same perturbation frequency condition is imposed. Instead, it occurs
when the perturbation frequency is near twice the hypothetical two-dimensional
laminar vortex shedding frequency as if there were no wake transition at Re = 220.

It is elucidated that, as a result of vortex synchronization, the trajectory of
the Kármán vortices and the vortex structure are changed. The Kármán vortices
are formed along the mean separating streamline slightly inside the mean wake
bubble at Re = 220, but slightly outside at Re =360. Thus, the Reynolds shear stress
force has different contribution to the streamwise force balance of the mean wake
bubble depending on the Reynolds numbers: its magnitude is negligible at Re = 220,
compared to other force components, while it reverses its sign at Re = 360. More
importantly, at Re = 220, the mode-A instability is suppressed into two-dimensional
laminar flow with strong Kármań vortices. At Re =360, the dominant instability
mode changes from mode B to mode A.

1. Introduction
The wake behind a circular cylinder has been investigated for so many years because

of its importance in fluid mechanics. In particular, this flow can be characterized by
one single parameter, the Reynolds number (Re), based on the cylinder diameter
(D). Near Re = 49, the Kármán vortex alley is formed with periodic shedding of
vortices. This two-dimensional laminar flow becomes three-dimensional with the start
of wake transition. According to Williamson (1996b), the wake transition involves two
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discontinuous changes which can be represented with small-scale three-dimensional
instability modes (i.e. modes A and B). For the first discontinuity around Re = 180–
194, which is hysteric, the Strouhal number (St) drops down abruptly from the value
on the extension of the laminar flow curve with the onset of streamwise vortex
pairs (mode A) of which the spanwise wavelength is approximately 3–4 cylinder
diameters. This mode-A instability is generated due to wavy deformation of the
Kármán vortices as they are shed. As Re increases up to 230–260, St jumps up
gradually with the emergence of mode-B instability which becomes more dominant
than mode-A instability. The streamwise vortex pairs for mode B are not related
with the deformation of Kármán vortices, but originated from an instability in the
braid shear layer region, which have finer spanwise wavelength of about 1 cylinder
diameter (1D). Since two transition modes have different characteristics and physical
origins as Williamson (1996b) pointed out, many researches have been performed to
investigate these wake transition modes for unperturbed flow (natural shedding state)
by Zhang, Fey & Noack (1995), Brede, Eckelmann & Rockwell (1996), Henderson
(1997), Persillon & Braza (1998), etc.

In the meanwhile, it is considered that when a bluff body is excited by an
external force, the vortex shedding frequency may be synchronized with the external
forcing frequency. This resonance is commonly termed vortex lock-on or vortex
synchronization which can occur with various external forcings such as in-line, or
transverse, or rotational oscillation of a cylinder, or an oscillatory incident flow.
According to an extensive review of Griffin & Hall (1991), for the transverse and
rotational oscillation cases, the vortex shedding frequency is synchronized with the
oscillation frequency (fp) when it is near the natural shedding frequency (fn). On
the other hand, in the case of the oscillatory incident flow or in-line oscillation of
a circular cylinder, vortex synchronization occurs when fp is near twice fn. When
vortex synchronization takes place, there is a substantial increase not only in the
mean drag but also in the oscillatory drag and lift forces. Since these increased forces
may cause structural vibrations and acoustic noises, and in some cases trigger failure,
vortex synchronization can impose serious problems in many engineering applications
(Griffin & Hall 1991).

In the case of oscillatory incident flow, Konstantinidis, Balabani & Yianneskis (2003)
presented a parametric map, which shows the limit of the vortex synchronization
regime in terms of perturbation amplitude and frequency. They used their own
experimental data and previously published data obtained in the range of Reynolds
numbers 80 � Re � 40 000, where the trough of the vortex synchronization regime
(defined by the minimum amplitude that can generate vortex synchronization) is
generally shown to be formed near the point corresponding to twice fn. However, the
vortex synchronization regime obtained by Griffin & Ramberg (1976) at Re =190
seems to show that the trough is shifted somewhat towards the point corresponding
to more than twice fn. We paid our attention to this different trends in the vortex
synchronization regime for the particular Reynolds number belonging to mode-A
regime, which has not been explained clearly yet.

In order to compare the vortex dynamics between the natural shedding and vortex
synchronization states, Kim, Yoo & Sung (2006) investigated the trajectory of the
vortex centre and the streamwise force balance for the mean wake bubble at Re =360
(mode-B regime) using the data obtained by time-resolved particle image velocimetry
(PIV) technique. The streamwise force balance for the mean wake bubble, which was
considered by Roshko (1993) and extended for various wake flows by Balachandar,
Mittal & Najjar (1997), is maintained between the net Reynolds stresses and the
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pressure forces acting on the boundary of the mean wake bubble. They also showed
that the direction of the net Reynolds shear stress force was reversed due to the
occurrence of vortex synchronization. This reversal was explained by examining the
trajectory of the vortex centre. That is, in the natural shedding state the vortex
centre was formed inside the mean wake bubble, while in the vortex synchronization
state it was formed outside. Their interpretation of vortex dynamics for the vortex
synchronization state at mode-B regime has motivated us to start the present study
on the vortex synchronization state at mode-A regime, because the wake flows
for mode-A and mode-B regimes might show different characteristics in the vortex
synchronization states due to their different physical origins.

In the present study, we focus on the vortex synchronization phenomena in the
circular cylinder wakes at Re = 220 (mode-A regime) and 360 (mode-B regime)
by using direct numerical simulation (DNS). First, the conditions of perturbation
frequency required for the occurrence of vortex synchronization are examined at each
Re. From this, we discuss the reason why the shape of the vortex synchronization
regime at the particular Re is different from that of the general vortex synchronization
regime. Second, as an extension of Kim et al. (2006), we investigate the changes in the
trajectory of the vortex centre and its effects on the streamwise force balance for the
mean wake bubble in the vortex synchronization state. For a direct comparison with
Kim et al. (2006), we are to adopt the same notations and the same logic. Finally, the
vortex structures in the vortex synchronization state are compared with those in the
natural shedding state. In particular, comparing the streamwise vorticity components
in the wake region, the characteristics of the streamwise vortex pairs are investigated,
which are changed due to the occurrence of vortex synchronization. The physical
mechanism of this change is explained by analysing the formation of the saddle point
in the braid shear layer.

2. Numerical details
In this section, an outline of direct numerical simulation is described, including the

governing equations, numerical method, boundary conditions and grid system.
The governing equations used in the present study are based on the compressible

flow formulation of the Navier–Stokes equations. In the Cartesian coordinate system,
they take the following form:
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where T is the temperature and the Reynolds number Re = ρ∞U∞D/μ∞ is defined
in terms of the free stream velocity U∞ and the cylinder diameter D (subscript ∞
denotes far-field values); M = U∞/

√
γRT∞ and Pr = μCp/k are the free stream Mach

number and the Prandtl number, where R, Cp and k are gas constant, constant
pressure specific heat and thermal conductivity, respectively. In this study, we assume
that M = 0.2 and Pr = 0.7, which correspond to subsonic condition of the air.

Although practically incompressible flows are considered, compressible flow
formulation is adopted because (i) it naturally enables us to use high-resolution
schemes on a structured mesh, and (ii) it also constitutes the basis for
direct computation of flow-induced noise and heat transfer in the future work.
Computational overhead caused by using compressible solver for low-Mach-number
flow is compensated with high-resolution discretization and implicit time-marching
scheme, as will be described below.

In order to handle the cylinder geometry, governing equations (2.1) are translated to
the form in curvilinear coordinates. To overcome severe limitation on computational
time step, fully implicit second-order Crank–Nicolson scheme is adopted and the
fourth-order compact difference scheme (Lele 1992; Ekaterinaris 1999; Park, Yoo &
Choi 2004) is used for all spatial derivatives including metric terms. For minimi-
zation of the aliasing error, nonlinear terms are written in skew-symmetric form (Park
et al. 2004). In order to avoid the degradation of modified wavenumber characteristics,
hybrid collocated and staggered grid system (Lele 1992; Nagarajan, Lele & Ferziger
2003) is adopted in the sense that conservative variables and convective flux vectors
are defined at grid points while viscous flux vectors are defined at staggered positions.
An eighth-order compact filter (Lele 1992; Visbal & Gaitonde 1999) is applied
to the computational variables at every twentieth time steps to damp out numerical
instabilities originated from odd–even decoupling, mesh non-uniformity and boundary
conditions. More detailed explanation of the numerical method are provided in the
Appendix.

Figure 1 shows the schematics of computational domain and boundary conditions,
and an O-type grid near the wake region. Treatment of boundary conditions is similar
to that of Beaudan & Moin (1994). On the cylinder surface, no-slip and adiabatic
conditions are imposed. The outer circular boundary is divided into three parts, i.e.
inflow, outflow and wake boundaries, as illustrated in figure 1(a). On the inflow and
outflow boundaries, classical method of characteristics is applied to the flow variables.
Thus, the inflow boundary conditions are expressed as

p

ργ
=

(
p

ργ

)
∞

, R1 = R1∞, ∂ηR2 = 0, VT = VT ∞, w = 0, (2.3)

where R1 = VN + 2c/(γ − 1), R2 = VN − 2c/(γ − 1), VN = (−ηxu − ηyv)/
√

η2
x + η2

y , and

VT = (ηyu − ηxv)/
√

η2
x + η2

y are the first and second Riemann invariants, the normal

and tangential components of the velocity, respectively, and ηx and ηy are the metric
terms. As the counterpart of (2.3), the outflow conditions are given by

∂η

(
p

ργ

)
= 0, ∂ηVT = 0, ∂ηR1 = 0, R2 = R2∞, ∂ηw = 0. (2.4)

On the wake boundary, Neumann condition ∂ηq = 0 is applied to all conservative
variables, where q = J −1[ρ, ρu, ρv, ρw, ET ]T is the solution vector, J is the Jacobian
of the coordinate transformation. Periodic boundary condition is imposed in the
spanwise direction. In order to trigger vortex synchronization, a sinusoidal streamwise
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Figure 1. (a) Schematics of coordinate system and boundary conditions and (b) O-type grid
generation adopted for the present simulations: only the wake region is shown for clarity.

perturbation velocity �U is superimposed on the uniform inflow velocity U∞, which
can be written in non-dimensional form as follows:

up(t) = A sin(2πfpt), (2.5)

where A= �U/U∞ and fp is the non-dimensionalized perturbation frequency.
As shown in figure 1(b), the grid is clustered near the cylinder surface and the wake

region. Domain radius is chosen to be large enough for the computational results
not to be affected by the boundary conditions through intensive parametric studies
on the domain size. Chosen domain size is rout = 32D, which is also consistent with
the proposal of Kwon & Choi (1996). Spanwise domain size Lz =3.5πD is chosen to
allow three or four pairs of streamwise vortices for the mode-A instability at Re = 220,
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whose wavelength is between 3D and 4D. Two grid systems, Grid I and Grid II, are
adopted for the simulation of unperturbed and perturbed flows, and one additional
grid system Grid II∗ is adopted for the grid validation. The number of grid points of
the Grid I is 134 × 97 × 65 in the radial, azimuthal and spanwise directions, and that
of the Grid II and Grid II∗ are 201 × 145 × 129 and 201 × 145 × 257, respectively.
The dimensionless time step size is δt+ = δtU∞/D = 0.0025 for all cases considered.
Thus, since the distance between the cylinder wall and the wall-nearest grid point is
δr =0.005D for all cases, δr+ = δr/

√
νδt = 1.5 at Re = 220 and 1.9 at Re = 360.

The accuracy and efficiency of the numerical method and computer code were
already validated through the applications to various turbulent flows (Jin, Park &
Yoo 2001; Park et al. 2004). For the present study, however, further validations will
be given in the subsequent sections by comparing with existing experimental and
DNS data for unperturbed natural shedding state at both Reynolds numbers.

3. Results and discussions
First, results for the natural shedding state at each Reynolds number is presented

for code validation. Then, conditions required for the occurrence of vortex
synchronization are analysed. Finally, discussions are carried out on changes in
global parameters, trajectory of the vortex centre, force balance for the mean wake
bubble and vortex structure due to the occurrence of vortex synchronization.

3.1. Natural shedding state

Figure 2 shows profiles of the mean velocity (ū and v̄) and the Reynolds normal
stress (u′u′ and v′v′) components in the streamwise and cross-stream directions for the
natural shedding state at Re = 360, where (·) and (·)′ denote the time-averaged mean
and its fluctuations, respectively. In order to examine grid sensitivity, we compare
these profiles at five locations in the near wake region, which are obtained with Grid
I, Grid II and Grid II∗, with other DNS data at Re = 300 obtained by Mittal &
Balachandar (1997). Although Re is slightly different, the present results are all in
excellent agreement with those of Mittal & Balachandar. It is also shown that except
for v′v′ at x � 5, the three solutions obtained with the three grids are nearly identical
to each other, implying that the present simulations are not quite sensitive to the
grid resolution, probably due to the low-Reynolds-number characteristics. Therefore,
we judge that it should be safe to use Grid I as the baseline grid of the present
simulations without sacrificing the accuracy significantly. However, we still decide to
use Grid II for the present simulation at Re =360 in order to be more conservative.

In the present study, St is determined on the basis of the shedding frequency
obtained from the average peak-to-peak distance of the oscillating lift coefficient
(CL) curve (see figure 10) for 30 cycles after the quasi-steady states. In figure 3,
the predicted Strouhal numbers (St) for the natural shedding states at Re =220
and 360 are compared with the existing experimental data represented by the St–
Re relationship. As is clearly shown, the present data for St = 0.184 and 0.201 at
Re = 220 and 360, respectively, agree very well with the experimental data. Some
other important parameters such as the mean base suction pressure coefficient −C̄pb,
mean drag coefficient C̄D and the root-mean-square lift coefficient (CL)rms are also
shown to be in good agreement with other DNS or experimental data, as summarized
in table 1.

Figure 4 shows the qualitative comparison of the vortical structures visualized from
the present DNS and the experiment of Williamson (1996c) for natural shedding



Direct numerical simulation of vortex synchronization 67

y

u

–2 –1 0 1 2
y

–2 –1 0 1 2

y
–2 –1 0 1 2

y
–2 –1 0 1 2

x = 1.5

x = 2.0

x = 5.0

2

1

x = 3.0

x = 10.0

x = 1.5

x = 2.0

x = 5.0

x = 3.0

x = 10.0

x = 1.5

x = 2.0

x = 5.0

x = 3.0

x = 10.0

x = 1.5

x = 2.0

x = 5.0

x = 3.0

x = 10.0

0

(a)

1

1

1

1

v

–0.3

0

0

0

0

0

(b)

(c) (d)

0.3

u′u′ v′v′

0.4

0

0

0

0

0

0.2

–0.2 –0.5

0

0

0

0

0

0.5

Figure 2. Mean velocity and Reynolds normal stress profiles at 5 downstream locations for
the natural shedding state at Re = 360: , Grid I; , Grid II; �, Grid II∗; �, Mittal
& Balachandar (1997), Re = 300. (a) u, (b) v, (c) u′u′, (d) v′v′.
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Figure 3. Strouhal–Reynolds number relationship for the natural shedding state: �,
Williamson (1992); �, Fey, König & Eckelmann (1998); �, Miller & Williamson (1994);

, Posdziech & Grundmann (2001); �, the present study at Re =360; �, the present study
at Re = 220. The Strouhal numbers obtained by the present study for the perturbed cases at
Re = 220 (see table 2) are also indicated for later discussion: �, Case I-2; �, Case I-3; �,
Case I-4.
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Re Instability Mode Methodology −C̄pb C̄D (CL)rms

220 (present study) Mode A DNS 0.89 1.27 0.40
220a Mode A DNS 0.91 1.29 0.38
220b Mode A Exp. 0.87 − −
360 (present study) Mode B DNS 0.99 1.24 0.39
330c Mode B DNS 1.00 1.25 0.43
350b Mode B Exp. 0.96 − −

Table 1. Characteristic mean properties for each wake transition mode: aKim & Choi (2005),
bWilliamson & Roshko (1990), cPosdziech & Grundmann (2001).

D

(a)

(c)

(b)

(d)

D

Figure 4. Visualization of the vortex structures in the near wake region for two
three-dimensional instability modes. (a) Mode-A instability at Re = 200 and (b) mode-B
instability at Re = 270 are experimentally captured by Williamson (1996b). Visualizations of
vorticity field for the present study are plotted for (c) mode-A instability at Re = 220 and
(d ) mode-B instability at Re = 360: light grey, ωx = +0.8; black, ωx = −0.8; dark grey,
ωz = ±0.8.

states in mode-A and mode-B wake transition regimes. Figures 4(a) and 4(b) are
the experimental visualization obtained at Re = 200 (mode A) and 270 (mode B),
and figures 4(c) and 4(d ) show the present results at Re = 220 and 360, respectively.
According to Williamson (1996b), mode-A instability begins with a wavy deformation
of the primary Kármán vortices, and accordingly the counter-rotating streamwise
vortex pair begins to appear in the wake. As shown in figure 4(c), this feature of the
streamwise vortex structure is clearly observed in the present DNS at Re = 220. The
average spanwise wavelength of these streamwise vortex pairs, measured by peak-
to-peak distance of streamwise vorticity contours, is about 3.6D in this case, which
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Figure 5. Normalized spanwise wavelength (λz) of the streamwise vortex pair as a function
of the Reynolds number. λz for Case II will be discussed in § 3.3.4.

Re Case A/(πfp) fp Remarks

220 Case I-1 0.04 0.306
Case I-2 0.04 0.336
Case I-3 0.04 0.368 fp = 2fn

Case I-4a 0.04 0.396
Case I-5 0.04 0.426

360 Case IIa 0.04 0.402 fp = 2fn

Table 2. Conditions of the sinusoidal perturbation at each Reynolds number. aThe vortex
shedding frequency is related to the perturbation frequency by fs = 0.5fp .

is in very close agreement with other experimental data (see figure 5). For mode-B
instability, figure 4(b) shows that the streamwise vortices are more closely packed
in the spanwise direction at higher Re so that its average spanwise wavelength is
shortened, i.e. it becomes about 1D according to Williamson (1987, 1996c). As shown
in figures 4(d ) and 5, this feature is also well captured in the present simulation at
Re =360, where the predicted streamwise vortical structure as well as its wavelength
is in very good agreement compared with the experimental data.

3.2. The occurrence of synchronization

Table 2 shows the flow conditions covered in the present study to investigate the vortex
synchronization phenomena in perturbed flows. As in the previous studies on vortex
lock-on in the case of oscillatory incident flow (Barbi et al. 1986; Konstantinidis et al.
2003), we use normalized peak-to-peak velocity perturbation amplitude given by the
ratio of displacement to cylinder diameter, 2a/D =2�U/(ωD) = 2AU∞/(ωD), where
ω is normalized by U∞/D such that ωD/U∞ = 2πfp . For all cases, this normalized
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Figure 6. Variation of vortex shedding frequency with perturbation frequency: �, Case I-1,
Case I-2, Case I-3, Case I-4 and Case I-5 at Re = 220; �, Case II at Re = 360. When vortex
synchronization occurs, fs is related to fp by fs/fp = 0.5, so that only Case I-4 and Case II
correspond to vortex synchronization.

velocity perturbation amplitude is held constant at 2A/(2πfp) = 0.04 in order to
avoid additional complexities due to amplitude variations. The non-dimensionalized
perturbation frequency (fp) is used as the parameter to find the synchronization
condition at each Reynolds number. At Re =220, referred to as Case I, we consider
five subcases in the range of frequencies, 0.306 � fp � 0.426, such that Case I-1 and
Case I-5 correspond to the lower and upper bounds of the range, i.e. fp = 0.306
and 0.426, respectively; Case I-2 corresponds to the middle of the frequencies for
Case I-1 and Case I-3, i.e. fp = 0.336; Case I-3 corresponds to exactly twice the
natural shedding frequency (fn = 0.184), i.e. fp = 0.368; Case I-4 corresponds to twice
the shedding frequency (St = 0.198) near the two-dimensional laminar flow regime
(see figure 3), i.e. fp = 0.396. Unlike these five conditions at Re = 220, only one
perturbation condition is considered at Re = 360. This is because Kim et al. (2006)
already showed that the vortex synchronization occurs at fp =2fn at this Reynolds
number so that there is no need to cover a range of frequencies to search for the
synchronization condition. Since the present study can be considered as a follow-on
study of their work, by using DNS, we will consider here exactly the same condition
as considered by them, i.e. fp(= 2fn) = 0.402, which is designated as Case II in the
present study (see table 2).

In order to check the occurrence of vortex synchronization in each case, we consider
the relation between fs and fp after normalizing them with fn at each Re, as shown
in figure 6, where fs is obtained from the average peak-to-peak distance of the
oscillating CL curve for 30 cycles after the quasi-steady states. This is because in
a previous experimental study on vortex shedding and synchronization behind a
circular cylinder in oscillatory flow, Barbi et al. (1986) showed that fs is related to
fp by fs/fp = 0.5 when the vortex synchronization occurs in a perturbed flow. As
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Figure 7. Spectra corresponding to streamwise velocity signal obtained at x = 5 along the
wake centreline in (a) Case I-2, (b) Case I-3, (c) Case I-4 and (d ) Case I-5 (Re =220).

expected, the vortex synchronization in Case II at Re =360 is observed to occur
when the measured fs exactly matches half the imposed fp , as shown in figure 6.
This result is consistent with the previous experimental study of Kim et al. (2006)
using PIV. Quite interestingly, however, Case I-3 at Re = 220 does not show a clear
indication of the vortex synchronization although the imposed perturbation condition
is the same as that in Case II, i.e. fp =2fn. Instead, it is shown that at this Reynolds
number the vortex synchronization actually occurs at fp = 0.396 (Case I-4 in figure 6)
since the predicted fs exactly matches with the Barbi’s synchronization relationship
of fs/fp = 0.5.

The occurrence of vortex synchronization in Case I-4 can be also seen from the
discrete Fourier transform (DFT) results of the streamwise velocity signal obtained
at x = 5 along the wake centreline. Figure 7 shows these DFT results in Case I-2,
Case I-3, Case I-4 and Case I-5, in which the abscissa is normalized by fp . In each
case, there always exists a peak at f/fp = 1, but in Case I-2, Case I-3 and Case I-5,
another dominant peak is also shown to occur near f/fp = 1, which corresponds to
twice the shedding frequency (fs) in each case. Quite unlike these other cases, only
Case I-4 shows a single dominant peak at f/fp = 1, implying that at this condition
the vortex shedding occurs exactly at a frequency of fs = 0.5fp . These DFT results
clearly indicate that the vortex synchronization occurs only in Case I-4 among various
cases considered in the present study at Re = 220.
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The reason that vortex synchronization occurs in Case I-4 can be explained through
the examination of fs . The predicted fs in both Case I-1 and Case I-5 is 0.185 which
is approximately the same as fn = 0.184. On the other hand, in Case I-2, Case I-3 and
Case I-4, fs is modified from fn. That is, the predicted fs increases to 0.196, 0.195 and
0.198, respectively. Very interestingly, these increased fss in the three cases are shown
to exist near the value corresponding to two-dimensional laminar vortex shedding
frequency (see figure 3), implying that the wake transition is suppressed in these three
cases. From these results, we can conclude that at Re =220, vortex synchronization
occurs when the perturbation frequency is not near twice the natural shedding
frequency but near twice the modified shedding frequency due to the suppression of
wake transition. Thus, vortex synchronization occurs in Case I-4 where fp is twice
the value corresponding to suppressed wake transition regime. The verification of
the suppression of wake transition will be discussed in more detail in the following
subsection.

3.2.1. Suppression of wake transition

If the wake transition is suppressed, the three-dimensionality of the flow will be
significantly diminished. This can be shown by using two flow quantities introduced
by Poncet (2002): the spanwise enstrophy

Zz =

∫
Ω

ω2
z dV, (3.1)

and orthogonal enstrophy

Z⊥ =

∫
Ω

(ω2
x + ω2

y) dV, (3.2)

where Ω represents the whole computational domain, and ωx , ωy and ωz denote the
streamwise, cross-stream and spanwise vorticity components, respectively. Figure 8(a)
shows time history of Z⊥ in each case at Re = 220. As shown in this figure, the
predicted Z⊥ in Case I-1 and Case I-5 does not vanish with time, which means that
there remains a significant three-dimensionality in the flow. In Case I-2, Case I-3 and
Case I-4, on the other hand, Z⊥ is shown to decrease with time and it eventually
vanishes, indicating that there exists little three-dimensionality in the flow in these
cases. Figure 8(b) shows time histories of Zz only in Case I-3, Case I-4 and Case I-5,
since the time histories of Zz show similar tendencies, respectively, in Case I-1 and
Case I-5, and in Case I-2 and Case I-3. It is shown that the mean values of Zz in
Case I-3 and Case I-4 are higher than that in Case I-5, implying that the Kármán
vortex becomes stronger. From the observations of modification of the Strouhal
number and vanishing three-dimensionality of the flow, we can conclude that the
wake transition behind the circular cylinder is suppressed in Case I-2, Case I-3 and
Case I-4 (Yoo, Kim & Bae 2006).

3.2.2. Vortex synchronization regime

Suppression of wake transition affects the shape of vortex synchronization regime
which is defined on the basis of the perturbation amplitude and frequency. Figure 9(a)
shows the limit of general vortex synchronization regime at various Reynolds numbers
(Konstantinidis et al. 2003). As shown in the figure, the trough of the vortex
synchronization regime is formed around the point corresponding to twice fn. In the
meanwhile, figure 9(b) shows the vortex synchronization regime at Re = 190 obtained
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Figure 8. Time histories of (a) Z⊥ and (b) Zz at Re =220, where Z⊥ and Zz are defined as∫
Ω

(ω2
x + ω2

y) dV and
∫

Ω
ω2

z dV , respectively.

by Griffin & Ramberg (1976) and the perturbation conditions for the present study
at Re = 220. The trough of the vortex synchronization regime of Griffin & Ramberg
(1976) seems to be shifted towards the point corresponding to more than twice fn.
Quite interestingly, the point corresponding to Case I-4 seems to be the trough of this
vortex synchronization regime although Re is slightly different. It indicates that the
trough of the vortex synchronization regime in mode-A regime is formed, depending
not on fn but on the modified shedding frequency due to the suppression of the wake
transition (Yoo et al. 2006).

3.3. Changes due to the occurrence of the vortex synchronization

Occurrence of vortex synchronization causes several changes in the wake behind the
circular cylinder. In order to investigate these changes and compare them between
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Figure 9. Limits of the vortex synchronization regime as functions of perturbation amplitude
and frequency. (a) General vortex synchronization regime: �, Tanida, Okajima & Watanabe
(1973) at Re =4000; �, Konstantinidis et al. (2003) at Re = 2150; +, Armstrong, Barnes
& Grant (1986) at Re = 21 500; �, Barbi et al. (1986) at Re = 3000; �, present study with
synchronization at Re = 360. (b) Vortex synchronization regime for mode-A instability regime:
�, Griffin & Ramberg (1976) at Re = 190; �, present study with synchronization at Re = 220;
×, present study without synchronization at Re = 220.

Re = 220 and 360, we will discuss global parameters, trajectories of the vortex centre,
force balance of the mean wake bubble and vortex structures.

3.3.1. Global parameters

Table 3 shows the global parameters at each Re, where the length of the mean
wake bubble xL is measured from the centre of the cylinder to the location of zero
mean velocity (reattachment point). For comparison, the values of xL obtained by
Kim et al. (2006) using PIV are also included. Due to the vortex synchronization,
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Re State xL −C̄pb C̄D (CD)rms ue

220 (present study) Natural 1.54 0.89 1.28 0.02 1.31
Synchronization 1.10 1.09 1.43 0.52 1.33

360 (present study) Natural 1.44 0.99 1.24 0.04 1.34
Synchronization 0.98 1.29 1.42 0.41 1.36

360 (Kim et al. 2006) Natural 1.67 − − − 1.27
Synchronization 1.06 − − − 1.35

Table 3. Comparison of global parameters between the natural shedding and
synchronization states at each Reynolds number.
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Figure 10. Time histories of CD and CL for the natural shedding state at Re = 220 and for
the vortex synchronization state in Case I-4 where the flow was perturbed for t � 0.

the predicted xL is shortened from 1.54 to 1.10 at Re = 220 and from 1.44 to 0.98 at
Re =360, respectively. There exist some discrepancies in the magnitude of xL between
DNS and PIV data, which seems to be due to the low aspect ratio of circular cylinder
used for PIV experiment of Kim et al. (2006). However, variation of xL due to the
occurrence of vortex synchronization is shown to be in reasonable agreement between
DNS and PIV data. That is, xL is shortened with vortex synchronization about
32 % and 36 % for DNS and PIV, respectively. Other important parameter −C̄pb is
increased by about 22 % and 30% at Re =220 and 360, respectively, which is related
to the increase of the drag force. Figure 10 illustrates the CD and CL for the natural
shedding state at Re =220 and for the vortex synchronization state at Re = 220 (i.e.
Case I-4). Perturbation is introduced for t � 0 in Case I-4, and after about 30 time
units, the flow reaches a time-periodic state. A remarkable change is observed for
CD curves. As shown in table 3, (CD)rms significantly increases from 0.02 to 0.52 at
Re =220 and from 0.04 to 0.41 at Re = 360 due to the vortex synchronization. The
mean values of drag coefficient C̄D also increases from 1.28 to 1.43 at Re = 220 and
from 1.24 to 1.42 at Re = 360, respectively.

3.3.2. Trajectory of the vortex centre

We investigate the motion of the Kármán vortices by observing the trajectories of
the vortex centre which are determined by the same method as used in Kim et al.
(2006). Figure 11 shows the trajectories of the vortex centre, superimposed on u′v′
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Figure 11. Comparison of the trajectories of the vortex centre, superimposed on u′v′

distributions for the natural shedding states at (a) Re =220 and (b) Re = 360, and for the
vortex synchronization states in (c) Case I-4 and (d ) Case II. Solid lines denote mean separating
streamlines and open circles denote the loci of vortex centres.

distributions, where open circles denote the loci of vortex centres traced at time
intervals of 0.25 and solid lines denote the mean separating streamlines. Figures 11(a)
and 11(b) show trajectories of the vortex centre for the natural shedding states at
Re = 220 and 360, and figures 11(c) and 11(d ) show them in Case I-4 and Case II,
respectively. For the natural shedding state at each Reynolds number, the Kármán
vortices are gradually formed inside the mean wake bubble and move downstream as
shown in figures 11(a) and 11(b). Occurrence of vortex synchronization, on the other
hand, changes these trajectories of vortex centre. In both Case I-4 and Case II, the
Kármán vortices are formed along the mean separating streamline and the paths of
vortices shed in the upper and lower parts meet together at the reattachment point,
as shown in figures 11(c) and 11(d ). It is particularly interesting to note that the
present results at Re = 360 are consistent with those of Kim et al. (2006). Behind
the reattachment point, the Kármán vortices move downstream, fluctuating along
the wake centreline in Case I-4 and more dynamically in Case II. Interestingly, we
find a slight difference in trajectories of vortex centre around the mean wake bubble
between Case I-4 and Case II. That is, the Kármán vortices are formed near the mean
separating streamline slightly inside the mean wake bubble in Case I-4 while slightly
outside in Case II. We pay attention to this difference because the trajectory of the
Kármán vortices around the mean wake bubble affects the force balance of the mean
wake bubble, which will be discussed in the following subsection.
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3.3.3. Force balance of the mean wake bubble

Balachandar et al. (1997) and Kim et al. (2006) analysed the force balance of the
mean wake bubble in the time-averaged and two-dimensional sense to investigate
the interaction between the shear layers resulting in the Kármán vortex shedding.
The non-dimensionalized streamwise force balance inside the mean wake bubble for
the compressible flow can be written as∫

∂Ω

pnx ds +

∫
∂Ω

{
ρu

′
u

′ − μ

Re

(
4∂u

3∂x
− 2∂v

3∂y

)}
nx ds

= −
∫

∂Ω

{
ρu

′
v

′ − μ

Re

(
∂u

∂y
+

∂v

∂x

)}
ny ds, (3.3)

where ∂Ω represents the boundary of the mean wake bubble, nx and ny are the
direction cosines of the outward unit normal vector on the boundary of the mean
wake bubble. The triple fluctuation components and density fluctuations are neglected
on the ground of the low Mach number of M = 0.2 (Morkovin’s hypothesis). For
simplicity and direct comparison with PIV data of Kim et al. (2006), three terms in
(3.3) such as

∫
∂Ω

(4μ∂u/3Re∂x)nx ds,
∫

∂Ω
(2μ∂v/3Re∂y)nx ds and

∫
∂Ω

(μ∂v/Re∂x)ny ds

are neglected (in fact, each of these terms is less than 5 % of the dominant term in
each case). After this approximation, (3.3) takes the form∫

∂Ω

Cpnx ds +

∫
∂Ω

Cnnx ds ≈
∫

∂Ω

Cτny ds +

∫
∂Ω

Cτνny ds. (3.4)

Each coefficient is defined as follows:

Cp =
p − pb

1

2
ρu2

e

, Cn =
ρu

′
u

′

1

2
ρu2

e

, Cτ = − ρu
′
v

′

1

2
ρu2

e

, Cτν =

μ

Re

∂u

∂y

1

2
ρu2

e

, (3.5)

where pb is the non-dimensionalized mean pressure at the base of the cylinder and ue

is the velocity at the edge of the separated shear layer, which is non-dimensionalized
by U∞ (see table 3 for values of ue). The terms on the left-hand side of (3.4) account
for the net x direction force due to the pressure and the Reynolds normal stress.
Two terms on the right-hand side account for the net x direction forces due to the
Reynolds shear and viscous shear stresses. From now onwards, each term of (3.4) will
be represented as [Cp], [Cn], [Cτ ] and [Cτν] for convenience sake.

Figure 12 shows the distributions of Cn and Cτ for the natural shedding state and
the vortex synchronization state (Case II) at Re = 360 along the path of separation
point (S ), reattachment point (R) and base point (B ), i.e. the boundary of the top half
of the mean recirculation region, where the integrated areas inside the closed curves
represent the net forces acting on the mean wake bubble by the Reynolds normal and
shear stresses. Left figures show the natural shedding states and right figures show the
vortex synchronization states, where PIV data of Kim et al. (2006) are also included
for comparison. The distributions of DNS and PIV data show general agreement with
each other except Cτ distribution near reattachment points due to different definition
of xL. In particular, as a result of the vortex synchronization, the changes in the
distributions of Cn and Cτ indicated by both DNS and PIV data showed consistent
tendencies (Yoo, Park & Park 2005). That is, the magnitude of Cn is reduced as
noticed by comparing figures 12(a) and 12(b), and the sign of Cτ is changed along the
path of S–R, as noticed by comparing figures 12(c) and 12(d ). In figure 13, we plotted
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Figure 12. Distributions of Cn and Cτ along the path of separation point (S ), reattachment
point (R) and base point (B ) at Re = 360. Figures (a) and (c) show the natural shedding state,
and (b) and (d ) show the vortex synchronization state (Case II). Figures (a) and (b) show
distributions of Cn, and figures (c) and (d ) show distributions of Cτ : , DNS (present
data); �, PIV (Kim et al. 2006).

Cτ distributions for the natural shedding state and the vortex synchronization state
at Re =220 (Case I-4), to compare the change in the distributions of Cτ with that at
Re = 360. Since the magnitude of Cn is also reduced due to the vortex synchronization
in Case I-4 (not shown for brevity), similar to Case II, only the distributions of Cτ are
compared. It is noticeable that unlike in Case II, Case I-4 shows that the sign of Cτ

is not reversed but its magnitude is significantly diminished along the path of S–R.
This difference in the distribution of Cτ can be explained through the relationship
between the mean separating streamline and the trajectory of the Kármán vortices
around the mean wake bubble. According to Kim et al. (2006), when the trajectories
of the Kármán vortices are formed inside the mean wake bubble, outside the mean
wake bubble and on the mean separating streamline, the sign of Cτ will be positive
(coincident with the streamwise direction), and negative, and the magnitude of Cτ will
be negligible along the path of S–R, respectively (see figure 18 of Kim et al. 2006).
In the present study, the Kármán vortices in Case I-4 are formed near the mean
separating streamline slightly inside the mean wake bubble while in Case II they are
formed slightly outside the mean wake bubble as mentioned above (see figures 11c
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Figure 13. Distributions of Cτ at Re =220 along the path of separation point (S ),
reattachment point (R) and base point (B ): , natural shedding state; ,
synchronization state.

Re Case [Cp] [Cn] [Cτ ] [Cτν] Remarks

220 Natural −0.025 0.067 0.017 0.020
Synchronization −0.024 0.043 0.005 0.010 Case I-4
	[·] −0.001 0.024 0.012 0.010

360 Natural −0.038 0.072 0.018 0.014
Synchronization −0.050 0.051 −0.007 0.005 Case II
	[·] 0.012 0.021 0.025 0.009

Table 4. Contributions of respective net force terms to streamwise force balance, which are
due to the pressure [Cp], Reynolds normal [Cn] and Reynolds shear [Cτ ] stresses and viscous
shear stress [Cτν], where 	[·] = [·]natural shedding − [·]synchronization.

and 11d ). For these reasons, the magnitude of Cτ is significantly decreased in Case I-4
and its sign is reversed in Case II along the path of S–R, respectively.

Table 4 summarizes the contributions of respective force terms of (3.4) for natural
shedding and vortex synchronization states at each Re. Note that, for all cases, [Cp]+
[Cn] are well balanced with [Cτ ] + [Cτν], which implies that the approximation of
using these four terms is reasonable for considering the force balance of the mean wake
bubble at relatively low Reynolds numbers. According to Balachandar et al. (1997),
among all force terms, contribution of [Cn] is dominant in the cylinder geometry. As
shown in table 4, the present study also shows a consistent result, where contributions
of [Cn] are dominant for natural shedding state at each Re. The contributions of
respective terms, however, are changed differently, depending on the Re due to the
vortex synchronization. The magnitude of [Cp] is hardly changed in Case I-4 but
increased about 30 % in Case II, since [Cτ ] is significantly changed due to reversed
direction in Case II, where 	[Cn] and 	[Cτν] at Re = 220 are comparable with those
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Figure 14. Time histories of Z⊥ and Zz in Case II (Re = 360).

at Re = 360. Therefore, the contribution of [Cn] is still dominant in Case I-4 while
the contribution of [Cn] is comparable with that of [Cp] in Case II.

3.3.4. Vortex structure

As a result of vortex synchronization, vortex structure in the wake behind the
circular cylinder is also changed at both Re = 220 and Re =360. The growth and
decay of spanwise and streamwise vortices are evaluated in terms of the time histories
of Zz and Z⊥ in Case II, as shown in figure 14 (time histories in Case I-4 are already
shown in figure 8). The mean values of Zz and Z⊥ are gradually increased and
decreased, respectively, implying that the Kármán vortex is strengthened while the
streamwise vortex is weakened due to the vortex synchronization (Yoo et al. 2005).
This is similar to what was observed by Poncet (2002, 2004) who triggered vortex
synchronization by using rotationally oscillating cylinder at Re =500 and at Re = 400,
respectively. These changes are visually examined in figure 15. Figures 15(a) and 15(b)
show visualized vortex structures for the natural shedding states at Re = 220 and 360,
while figures 15(c) and 15(d ) show those for the vortex synchronization states in
Case I-4 and Case II, respectively, where figures 15(a) and 15(b) are repeatedly
included here for better comparison although they are already shown as figures 4(c)
and 4(d ). In Case I-4, we cannot see any streamwise vortex pair and wavy deformation
of the Kármán vortex since the flow behind the circular cylinder has changed into
two-dimensional laminar flow, i.e. the three-dimensionality of the flow is vanished (see
figure 8a). On the other hand, in Case II, there exist steamwise vortex pairs although
their strength is significantly diminished. Moreover, their characteristics are shown
to be changed from those of the natural shedding state at Re =360, which will be
discussed in more detail as follows.

To study qualitatively the characteristics of the streamwise vortex pairs, figures 16,
17 and 18 show ωx contours in the y–z plane at x =3 for the natural shedding
states at Re = 220 and 360, and for the vortex synchronization state at Re =360
(Case II), respectively. All the figures 16, 17 and 18 are plotted with the data obtained
after reaching quasi-steady states. Especially, figures 18(a) and 18(b) for Case II are
plotted with the data obtained at t =87.5 and t = 90.0, respectively. ωx contours in
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Figure 15. Visualization of vorticity field for the natural shedding state at (a) Re = 220 and
(b) Re =360, and for the vortex synchronization state in (c) Case I-4 and (d ) Case II: light
grey, ωx/|ωx |max = +0.1; black, ωx/|ωx |max = −0.1; dark grey, ωz/|ωz|max = ±0.1, where |ωx |max

and |ωz|max are maximum values of ωx and ωz in the near wake, respectively. For (a), (b),
(c) and (d ), the values of |ωx |max are, respectively, 5, 8, 0 and 2, and those of |ωz|max are,
respectively, 8, 10, 8 and 14.
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Figure 16. ωx contours in the y–z plane obtained at x = 3 for the natural shedding state at
Re = 220 (mode-A instability): there is a time lag of half a shedding cycle between (a) and (b).
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instability).
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Figure 18. Same as figure 16, but for the vortex synchronization state at Re = 360.

figure 16(a) are plotted at phase =0 (where the CL curve reaches a peak point) while
those in figure 16(b) are plotted at phase = π. Hence, figures 16(a) and 16(b) show
ωx contours at the same downstream location with opposite y coordinates at two
different moments, where there is a time lag of half a shedding cycle. Figures 17 and
18 are plotted with the same procedure as that of figure 16. According to Williamson
(1996b), mode-A instability shows an out-of-phase symmetry due to its physical
origin, i.e. wavy deformation of the Kármán vortices. On the other hand, mode-B
instability shows an in-phase symmetry pattern since pre-existing streamwise vortices
are ‘imprinted’ onto a newly forming braid shear layer (Williamson 1996b). As shown
in figures 16 and 17, dominant ωx contours exhibit an out-of-phase symmetry and
an in-phase symmetry for the natural shedding state, respectively, at Re =220 and
Re = 360: the sign of ωx contour is changed at Re = 220 while it is not at Re =360
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Figure 19. Spectra corresponding to ωx obtained along the z-axis at (x, y) = (3, 1) for the
natural shedding and vortex synchronization (Case II) states at Re = 360, where abscissa
shows wavelength (λ).

after half a shedding cycle at the same z position. Interesting features, on the other
hand, are observed in Case II as shown in figure 18. That is, unlike the natural
shedding state at the same Re = 360, dominant ωx contours show an out-of-phase
symmetry with significantly diminished magnitude (note that the contour level is
different).

Moreover, dominant spanwise wavelength of ωx contours in Case II is shown to
increase, compared to that for the natural shedding state at Re =360. In order to
investigate qualitatively this increased wavelength, we performed DFT for ωx , which
was obtained along the z-axis at y = 1 from figures 17(a) and 18(a). The DFT results
are shown in figure 19 where the abscissa represents normalized wavelength (λ) by
cylinder diameter. For the natural shedding state at Re = 360, the dominant peak
exists near λ=1, as expected. In Case II, on the other hand, the magnitude of the
peak near λ=1 is significantly diminished, but the dominant peak rather exists near
λ= 3.5π/4 
 2.7 (Yoo et al. 2005). In order to investigate the dominant λ for Case II
more clearly, we consider the axial energy spectrum (Poncet 2004) defined by

‖û‖2
2 =

∫
�2

|û(x, y)|2 dx dy, (3.6)

with respect to λ, where û denotes the DFT of the velocity along the z-axis.
Figures 20(a) and 20(b) show the axial energy spectra for Case II with respect
to the normalized wavenumber 2π/λ and normalized wavelength λ respectively.
There is no significant resonance at t = 0.0 (natural shedding state) as shown in
figure 20(a). However, the resonance at 2π/2.7 
 2.3 becomes stronger with time after
forcing. The energy spectra in quasi-steady states (t =87.5 and t = 90.0) exhibit strong
resonance around λ= 2.7, as shown in figure 20(b). This long spanwise wavelength
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Figure 20. Axial energy spectrum for Case II. (a) Energy spectrum with respect to normalized
wavenumber 2π/λ in a logarithmic scale at t = 0.0 (without forcing), 50.0 and 87.5 (quasi-steady
states after forcing). (b) Energy spectrum with respect to wavelength λ in quasi-steady states
at t = 87.5 and t = 90.0.

of approximately 2.7 seems to be an extrapolated value from those corresponding to
the spanwise wavelengths for mode-A instability of Williamson (1996a) (see figure 5).

From the examination of symmetry and spanwise wavelength, ωx contours in
Case II in figure 18 are likely to originate from mode-A instability. Thus, we conclude
that in Case II, mode A is the dominant instability in the near wake region since
mode B-instability is suppressed due to the occurrence of vortex synchronization.

3.3.5. Saddle point in the braid shear layer

Suppression of mode-B instability at Re =360 can be explained by investigating
the effect of vortex synchronization on the formation of saddle point. According
to Williamson (1996b), for mode-B instability the streamwise vortex in the shear
layer, perturbed by the previous braid vortices, is subject to tilting and stretching in
proximity to the saddle point. This aspect was topologically investigated by Sung &
Yoo (2003) using time-resolved PIV for the natural shedding state at Re =360. They
showed that the diverging separatrix of the saddle is aligned with the streamwise
vortex filament, making the filament stretch along the diverging separatrix. During
the process of vortex stretching, the surrounding fluid is advected to the saddle point
along the converging separatrix, which produces large velocity fluctuations (Sung &
Yoo 2003). Hence, by comparing the saddle point flows in the natural shedding and
the vortex synchronization states, a clue for the suppression of mode-B instability
may be found.

To compare the locations of the saddle points in the natural shedding and vortex
synchronization states, figure 21 shows the streamlines and ωx contours in the x–y
plane at z = 2, superimposed on the ωz contours, where hollow circle and square
represent vortex centre and saddle point, respectively. Figures 21(a) and 21(b) show
streamlines and ωx contours for the natural shedding state at Re = 360. Likewise,
figures 21(c) and 21(d ) show streamlines and ωx contours for the Case II. Figure 21(a)
is plotted after the quasi-steady states and figure 21(c) is plotted at 34.5 time units
after the forcing, when they are at the same phase, i.e. when CD curves reach the
local minima. As shown in figures 21(a) and 21(c), the saddle point exists in the
braid shear layer. Around this point, the braid shear layer perturbed by previous
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Figure 21. Comparison of (a) streamlines and (b) ωx contours in the x–y plane at z = 2,
superimposed on ωz contours for the natural shedding state at Re = 360, and likewise (c)
streamlines and (d ) ωx contours for the Case II, where hollow circle and square represent
vortex centre and saddle point, respectively. Figure (a) is plotted at the same phase as figure
(c) when CD curves reach the local minima.

streamwise vortex is stretched along the diverging separatrix and strong ωx is induced
by the velocity fluctuation due to the converging separatrix. We can see that the
strong negative ωx in the braid shear layer is aligned with the diverging separatrix
of the saddle, as shown in figures 21(a) and 21(b). However, for Case II, perturbed
braid shear layer can not develop as a streamwise vortex since the saddle point is
deviated from the braid shear layer. The deviated saddle point does not contribute
to the generation of mode-B instability, inducing velocity fluctuation and stretching
perturbed shear layer, so that the birth of the mode-B instability is suppressed for
Case II.

The deviation of saddle point from the braid shear layer for Case II occurs
because the strength and trajectory of the Kármán vortex is changed. The Kármán
vortex becomes stronger with the vortex synchronization, as mentioned in § 3.3.4.
The magnitude of ωz around the centre of the Kármán vortex (local maximum of
ωz = 6.3) for Case II is higher than that (local maximum of ωz = 5.3) for the natural
shedding state, as shown in figure 21. Moreover, the coordinates of the vortex centres
for the natural shedding state and for Case II are, respectively, (x, y) = (1.47, 0.19)
and (1.42, 0.06), so that the centre of the Kármán vortex for Case II is formed closer
to the backside of the circular cylinder and the wake centreline than that of the
natural shedding state. Because of the strengthened Kármán vortex and its modified
trajectory, the braid shear layer is convected to the −y direction and further away
from the saddle point.
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4. Conclusion
Direct numerical simulation is performed to investigate the vortex synchronization

phenomena in the wake of a circular cylinder at the Reynolds numbers of 220 and
360, disturbed by the sinusoidal streamwise velocity perturbation.

The sinusoidal perturbation, which is superimposed to trigger vortex synchroni-
zation, is found to suppress the wake transition at Re =220 in such a manner
that the vortex shedding frequency is modified from the natural shedding frequency
to the frequency corresponding to two-dimensional laminar vortex shedding. For
this reason, the base perturbation frequency for the vortex synchronization is not
twice the natural shedding frequency but twice this hypothetical two-dimensional
laminar vortex shedding frequency. In other words, the occurrence of vortex
synchronization suppresses wake transition for mode A, so that the trough of the
vortex synchronization regime of Griffin & Ramberg (1976) is formed around twice
the two-dimensional laminar vortex shedding frequency, unlike the trough of natural
vortex synchronization regime, which is formed around twice the natural shedding
frequency.

The streamwise force balance of the mean wake bubble is investigated at both
Reynolds numbers for the vortex synchronization state, on the extension of Kim et al.
(2006). For the natural shedding state, the contribution of the Reynolds normal stress
term is dominant at both Reynolds numbers. The contributions of respective terms
are modified by vortex synchronization. That is, the contribution of the Reynolds
shear stress force term to the force balance at Re =220 is negligible while its direction
is reversed at Re = 360. This can be explained through the trajectory of the Kármán
vortex, which is formed along the mean separating streamline inside the mean wake
bubble at Re =220 while outside at Re = 360. Due to reversed direction of the
Reynolds shear stress force term at Re = 360, the net pressure force acting on the mean
wake bubble is increased, so that the contribution of pressure force is comparable
with that of the Reynolds normal stress force. In contrast, at Re = 220, the Reynolds
normal stress term is still dominant since the magnitude of pressure force term is
hardly changed.

Vortex structure behind the circular cylinder is also modified due to the occurrence
of vortex synchronization. At Re = 220, the flow behind the circular cylinder changes
into two-dimensional laminar flow. On the other hand, at Re = 360, there exist stream-
wise vortex pairs although their strength is weaker than that of the natural shedding
state. Dominant instability for this flow rather exhibits characteristics of mode-A in-
stability with spanwise wavelength of approximately 2.7D. From this, we conclude that
mode-B instability is suppressed while mode-A instability become more dominant for
the vortex synchronization state at Re = 360. The physical mechanism of suppression
of the mode-B instability can be explained through the analysis of the saddle-point
flow. The location of saddle point is deviated from the braid shear layer because
of the strong Kármán vortex with the occurrence of vortex synchronization. This
deviation of the saddle point suppresses the generation of mode-B instability in the
braid shear layer, inducing velocity fluctuation and stretching perturbed shear layer.

This work has been supported by the BK21 Project, Mechanical Engineering
Division, Seoul National University under the auspices of the Ministry of Education
and Human Resources Development, Republic of Korea, and by Korea Institute
of Science and Technology Information under ‘The Sixth and Seventh Strategic
Supercomputing Support Program’.
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Appendix
Governing equations (2.1) in curvilinear coordinates (ξ, η, ζ ) (see figure 1a) take

the form
∂q
∂t

+
∂(E − Ev)

∂ξ
+

∂(F − Fv)

∂η
+

∂(G − Gv)

∂ζ
= 0, (A1)

where q = J −1[ρ, ρu, ρv, ρw, ET ]T is the solution vector, J is the Jacobian of the
coordinate transformation, E, F, G and Ev, Fv, Gv are, respectively, convective
and viscous flux vectors in each direction. For example, E = J −1(ξxe + ξy f +
ξz g) = J −1[ρU, ρuU + ξxp, ρvU + ξyp, ρwU + ξzp, (ET + p)U ]T , where e, f and g
are flux vectors in Cartesian coordinates and U = ξxu+ ξyv + ξzw is the contravariant
velocity component.

To overcome severe limitation on computational time step, fully implicit second-
order Crank–Nicolson scheme is adopted. After linearization, (A1) takes the form[

I +
�t

2

(
∂ξ A + ∂η B + ∂ζ C

)]
�qp = Rn,p, (A2)

where �qp = qn+1 − qp , A = ∂(E − Ev)/∂q, B = ∂(F − Fv)/∂q and C = ∂(G − Gv)/∂q
are Jacobian matrices. Superscript p refers to the number of nonlinear subiterations
during time advancement from the time level n to the new level (n + 1) with physical
time step �t in order to eliminate the linearization error. Thus, terms on the right
hand side is given by Rn,p = qn − qp − �t

2
[∂ξ (E − Ev)

n + ∂ξ (E − Ev)
p + · · ·].

From past experience on numerical analysis, it is known that nonlinear iteration
often diverges when the left-hand side of (A2) is discretized with low-order scheme
while the right-hand side is discretized with high-order compact difference scheme.
Thus, we adopt the fourth-order compact scheme for the left-hand side using the
method proposed by Park et al. (2004), which is the extension of the method proposed
by Ekaterinaris (1999). The key idea is to apply discrete weighted summation to (A2)
with weights corresponding to the left-hand side of Pade scheme (see Ekaterinaris
(1999) and Park et al. (2004) for more details). As shown by Ekaterinaris (1999), this
scheme is linearly stable with arbitrary time step, although actual time step is limited
by the nonlinearity of the problem and approximated Jacobians. For computational
efficiency, the approximate factorization is introduced for the left-hand side of (A2)
which is then solved by successive block tri-diagonal matrix inversion in direction-
by-direction manner. The factorization error is also driven to zero by nonlinear
iteration.

Recently, it is shown that the aliasing error leads to a significant consequence when
kinetic energy conservation is violated because of the aliasing error (Park & Mahesh
2007). Thus, nonlinear terms in the right-hand side are written in skew-symmetric
form to minimize the aliasing error (Park et al. 2004). For the momentum equation,
the nonlinear term is written as

Ni =
1

2

(
δρuiuj

δxj

+ ρuj

δui

δxj

+ ui

δρuj

δxj

)
, (A3)

where δ/δx denotes numerical derivative. The aliasing error due to the first part
(divergence form) and the second part (advective form) are of opposite sign so
that their effects are cancelled by the summation (Kravchenko & Moin 1997). It is
also shown (Blaisdell, Mansour & Reynolds (1991); Park & Mahesh (2007)) that
the skew-symmetric form conserves kinetic energy in the inviscid incompressible
limit. Therefore, the use of skew-symmetric form of convection term with high-order
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compact scheme plays a similar role to the use of staggered grid with second-
order scheme. However, it does not cure another source of numerical instability
due to mesh non-uniformity. As analysed by You et al. (2006), mesh stretching and
skewness also have adverse influence on the stability of second-order central difference.
The instability becomes more serious with high-order compact Pade scheme, since
disturbance/instability at any point instantly propagates to all the grid points of
computational domain due to the global/implicit nature of Pade scheme, just like
spectral method. On the other hand, disturbance remains local for explicit second-
order scheme since the width of the stencil is just three grid points. That difference
is why we need a filter for the current scheme. The main characteristic of adopted
eighth-order compact filter is that it eliminates only very high frequencies near 2-
delta wave (grid-to-grid oscillation). The validity of high-order filter associated with
compact scheme is thoroughly investigated by Visbal and colleagues (see Visbal &
Rizzetta 2002).

On the other hand, viscous terms on the right-hand side are discretized using
staggered approach (Lele 1992; Nagarajan et al. 2003) to avoid the degradation of
modified wavenumber characteristics due to the duplicate application of the first
derivative. Terms in viscous flux vectors are defined at ‘half-grid shifted’ or staggered
positions by using the following fourth-order difference and interpolation methods
for an arbitrary function f :

f
′

i−1/2 + 22f
′

i+1/2 + f
′

i+3/2 =
24

�
(fi+1 − fi) , (A4)

f I
i−1/2 + 6f I

i+1/2 + f I
i+3/2 = 4(fi+1 + fi), (A5)

where the subscript denotes discrete indices, f ′ and f I denote, respectively, derivative
and interpolation, and � is the grid spacing. Once viscous flux vectors are defined
at staggered positions, the derivative of a flux is given by the following fourth-order
compact scheme:

∂

∂nq

∂ξ Ev|
i−1 + 4 ∂ξ Ev|

i
+ ∂ξ Ev|

i+1

=
15

4�ξ

(
Ev|i+1/2 − Ev|i−1/2

)
+

3

4�ξ

(
Ev|i+3/2 − Ev|i−3/2

)
. (A6)

By using (A6) instead of (A4), the derivative of the viscous flux vector is computed
without tri-diagonal matrix inversion because the left-hand side of (A6) corresponds
to a weighted sum of discrete governing equations so that it is replaced by the right-
hand side of (A6). Modified wavenumber analysis shows that this scheme significantly
enhances resolution characteristics at high Reynolds numbers, and numerical results
support analytic prediction.

Since there is no artificial viscosity in the present central differencing, the simulation
can become easily unstable due to the amplification of various sources of numerical
instability such as 2�-mode (odd–even decoupling), mesh non-uniformity, kinetic
energy conservation and so on. To damp out such instabilities, a filtering technique is
applied to the conservative variables using an eighth-order compact filter (Lele 1992;
Visbal & Gaitonde 1999):

αf q i−1 + q i + αf q i+1 =

4∑
n=0

an

2

(
q i−n + q i+n

)
, (A7)
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where αf is the free parameter in the range of 0< |αf | � 0.5. The effect of the filter
decreases as αf approaches 0.5 so that αf = 0.5 corresponds to no filtering. The
coefficients an are determined as the functions of αf by the Taylor series expansion.
See Visbal & Gaitonde (1999) for their values. In this study, this filter is applied at
every physical time step with αf = 0.495. It is shown in terms of energy spectra that
this filter has negligible influence on the solution from the large eddy simulation of
turbulent channel flow and turbulent flow past a cylinder at Re = 3900 (Park et al.
2004).
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